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Abstract—The paper deals with a mathematical model of the process of freezing consumption products.

One-dimensional symmetrical problem with the third kind boundary conditions is considered. Differential

equations for heat and mass transfer (for discontinuous and nonlinear coefficient) in accordance with

the investigated process were numerically solved by finite difference method. The analysis of the results
obtained is presented here.

NOMENCLATURE
a, coefficient of temperature balance;
¢, ¢y, C,, specific heat;
i, average integral specific heat (i = 0, 1, 2);

F, initial humidity distribution;

h, steps of length;

i, (=1...2n)

Js (=12

L =1...v) integers;

n, (=1,2..)

z, (=LI1+1)

k, steps of time;

k' ky, ko, coefficient of mass conduction;

r, (=1,2..)) integer;

L, body thickness;

D, constant;

T, temperature;

T average integral temperature (i = 1, 2);

T.r»  Cryoscopic temperature for meat
T = 272:16°K,;

Tiwo, finite temperature of meat at the plate centre;

To,  initial temperature of meat;

T.,  surface temperature (x = n) in time t;

T, surrounding medium temperature in time 1;

w, mass-transfer potential;

Wy, mass—transfer potential on surface (x = n) in
time 1;

w,,  balanced mass-transfer potential;

wi,  mass-transfer potential on surface (T = T,,);

V, enthalpy of frozen products;

X, length coordinate;

¥, distance of limit phase separation from the
surface in time t;

\A approximate function for values of y.

Greek symbols

o, heat-transfer coefficient;

£, different values;

39, approximate function for values of T’;
3, average value;

K, coefficient of mass transfer;

A, thermal conductivity;

v, (=1,2..) integer;

o, product density;
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T, time;
v, displacement velocity of interface;
w, approximate function for values of w.

1. INTRODUCTION

DETERMINATION of unsteady temperature field of
frozen food products is a very difficult problem because
of the complicated character of such a process. It differs
from ordinary cooling by the following features:

(2) In examining the product it contains heat sources
after ice formation;

(b) Physical parameters of a product (thermal con-
ductivity 4, specific heat ¢, coefficient of temperature
balance a) depend on temperature and possess
cryoscopic temperature T,, which is discontinuous
and nondifferential (Fig. 1).
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F1G. 1. Relation between heat-transfer coefficient of frozen
meat and temperature.

Discontinuity and nonlinear physical parameters result
in nonisothermal transformation of water phase into ice
(solid in many water solutions).

Due to the complicated character of a process the
theory of freezing food products contains many un-
solved problems among which the most important are
related to:

1. The lack of enough exact solution for determining
the time of freezing of simple configuration products;
disregard of the complicated configuration for which
the problem is practically unsolved;
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2. The lack of solution for unsteady temperatue field
as well as for problems of crystal body shifting in
case of frozen products of simple and complex
configuration;

3. The lack of sufficient experimental data on physical
parameters during freezing of food products with
regard for moisture motion.

At present there is a feeling of lack of publications

on solution (even approximate) of any of the above

problems.

It is assumed in available publications [1-5] con-
cerning freezing problems that at the interface there
occurs freezing of the whole moisture (water) at a
constant temperature, and physical parameters 4, ¢, ¢
change their properties when T > T,,. As far as non-
isothermal process of freezing of water contained in
food products is concerned, such an assumption is un-
acceptable. In [6] dealing with the determination of
an unsteady temperature field and time of freezing of
food products, phase separation which results in a very
limited range was not taken into account.

In this work a mathematical model is given which
realizes a freezing process at conditions close to reality.
The above mathematical model made it possible to
solve many problems which allow better understanding
of the complicated process.

2. MATHEMATICAL MODEL

Due to the complicated character, the problem stated
was confined to a one-dimensional case (unlimited
plane).

Let the food products (meat, fish) be homogeneous
isotropic materials whose physical parameters depend
mainly on their temperature and moisture.

On both sides of the material the conditions of heat
and mass transfer are identical (symmetrical problem).

At a discontinuity point there exists a separation
limit phase, at which

T(y,t)= T, = const,
This limit divides the examined medium into unfrozen
part 1 and frozen part 2 (Fig. 2).

F1G. 2. Frozen meat plate.

From the heat balance we have

oV
—=adl,=-T)
it

;—;i; [eiW). Ty AL=).py + 2w, T). T v pa ]
=a.(L-T). (1)

Taking into consideration heat and mass transfer of
freezing process, we may describe the process by the
following equations

aT oT
pr- cl(w)~;=~[ 1(W). —J 0<x<L-y (2

i, 0
dw 0 -
—@7—6—[ )~-——J O0<x<L-y (3)
. -
p2-calw, T) =~§—[/12(w, )iq ]L —y<x<L (4
fizi[kz(u T). M] L-y<x<L (5
0t 0Ox
T .
2 (T,~T) = —ifw, T).— (6
0 x=L
ow ,
K(w,—wp) = —k'(w, T)— (69
ox x=L
T(x,0) = Y{x), T(y,7)= T, )
w(x, 0) = F(x), w(y,7) = Wi, T(0,73) = Tyo.

The system of equations (1)-(7) cannot be solved
analytically. The detailed solution of such a system can
be obtained only by a numerical method.

3. NUMERICAL SOLUTION OF THE MODEL PROPOSED

Of the known numerical methods only the network
method [7, 8] allows rather exact solution for com-
plicated nonlinear heat and mass-transfer problems.

The above assumptions confine the solution for food
freezing problems to:

D0 x<

Covering the range D with a difference net divides
0 < x < L into n equal segments with & as the length;
we have

LO0gt<g]

x;=(-1).h x,=L, i=1..n

Dividing the time interval 0 <t
ments with k as length, obtain

=1k I=0..v

7, into v equal seg-

Operating through the divided points parallel and
straight to the coordinates (1, x), obtain the difference
net Dy, covering the range D (Fig. 3).

The proposed mathematical model (1)-(7) could be
approximated in the following difference analogy
S[er. 91 (L= .p1+8.9:.5.p2]

= o (e =91+1), O0<F<L (8)

(0;¢)i10: 80041 = (411 (05911 + 0xlA}i1. 6:80 (D)
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Equations (§}-(14) are solved using difference diagrams
in the form T and I {Fig. 4).

Difference diagram I was used in the case when the
separation limit existed.

When the separation limit disappeared, the diagram
11 was used. At the initial time instant %, o0, o
are given. In order to calculate these values at the time
instant /41 equations (9}, (10) and (13} were used.
When 3, < %, equations {8}-{12} and {13} were used,
while at 8, ; < 3, equations {11}-{13} were employed.

4. STABLE AND CONVERGENT DIFFERENCE DIAGRAM

The problem of stable and convergent solution of
differential equations (for nonlinear heat-eonduction
problems) are very little investigated at present.

The only reliable way i1s to compare the results
obtained for different values of h and k.

The stability problem is related to the main difference
diagram (diagrams IT and absolutely stable).

The stable solution (for constant coefficients) results
in a definite time k with respect to:

p.

g

(“hf)mnx {}5}
where p is constant.

Large values of & and k lead to considerable errors
while small values cause sufficient increase in calcu-
lation time. Then it is necessary to find an optimal value
of h and k to ensure the exactness requirement with
a minimum calculation time, k being calculated from
equation (13), calculation is repeated with the value of
2h. If the difference in calcnlation results 1s small, the
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Fi1G. 4. Diagrams I and II.

value of h is not greater than the optimal one. In the
contrary case the value of h/2 should be used. If the
difference in calculation results is not small, it means
that the value of h is either greater or less than the
optimal one.

The value of p is chosen when calculating with
different values (0 < p < %) and shows, whether the
solution is convergent or divergent.

5. CALCULATION EXAMPLE

The universal difference model permits freezing par-
ameter influence (a, T;, 7,, 6) on the time of the process,
final temperature difference (AT =T, ,—T,,), dis-
placement speed of interface (v = dy/dt) to be analysed.

Calculations are carried out only for beef meat.
whose heat-conduction coefficients «, A are expressed
by the following relations:

for248:16 < T< T,

a(T) = [ — 110326509 — 261-421965 x Z
— 18252:4705 x Z* —26:133707 x Z*
~ 13387762 x Z*+
—7-31961337 x Z° ~0-11645322 x Z°]
x 1072, m?/h

A(T) = [ — 1246341825 7444650939 x Z
— 160251468 x Z2 —17695612 x Z*
—102:877816 x Z*+29-874844 x Z°
—0-343013138 x Z2°] x 107°, W/m .deg

for T, < T < 303-16°K

a(T) = 0:00042—-0-000001 x z, m*/h
MT) = 0476079324 - 0-0004026324 x =z, W/m .deg

where z = T—273-16.

Due to the lack of experimental data the influence
of the moisture motion on a temperature distribution
was neglected in the calculation.

Figures 5 and 6 show typical functions T = T(x, 1)
and y = j(z) for the following data:

L =008m h=00Ilm k=004h
T.=25716°K T, =279:-16°K T, = 260-66°K
o, = 33-26W/m?.deg p; = 1070kg/m> p, = 1010kg/m>,

Calculation error ¢, resulted from the replacement of
the differential equation by finite-difference one solved
by the Runge method is verified by the comparison of
the calculated results with different values of the net
range.

&, = 02°K.
Here presented is the effect of freezing parameters on

the time of process (Figs. 7 and 8), final difference tem-
perature (Fig. 9), displacement interface (Fig. 10).
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F1G. 5. Change of temperature of frozen meat plate.
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F1G. 6. Temperature distribution along
the thickness of mean plate.
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Fi1G. 7. Influence of heat-transfer coeflicient on
freezing time.
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FiG. 8. Influence of surrounding cooling temperature on
time duration of freezing process.
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F1G. 9. Influence of heat-transfer coefficient and surround-
ing cooling temperature on product final difference in
temperature.
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10. Influence of heat-transfer coefficient and surround-
ing cooling temperature on interphase transfer.
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6. CONCLUSIONS

From the analysis of the temperature variation
diagram (Fig. 5) two different stages in a process of
freezing can be seen. At the first stage a decrease in
temperature (to T;,) is seen in all layers of the first
sample, being the quickest on the surface and slowest
in the middie.

The fall of temperature is retarded due to the effect
of the solidified water heat, which is particularly large
near the cryoscopic temperature (T;,). The more inten-
sive cooling of the test layers, the more pronounced
is the temperature decrease when passing through T;,.

In case of slow cooling the retardation of temperature
fall is distinct (particularly at the centre of the sample).

Rapid temperature fall whose effect is more clearly
observed at the centre of the sample is also seen in the
figure. This is again the effect of solidified water solution
with noneutectic components. At this stage the basic
part of the heat removed is used for freezing out water
in the central part of the sample, while in all other
layers most of the water is already frozen out. When
most of the water at the centre of the sample is frozen
out, an accelerated fall of temperature is observed on
its surface. It can be seen from Fig. 6 that for steady
conditions (x = const, 7, = const) the velocity of inter-
face is approximately constant. This velocity increases
with the rate of heat removal.

From the analysis of the calculation carried out the
following conclusions of practical value can be made:
1. The thickness of meat should not be large to give

the most effective time of freezing and a small final

temperature difference AT.

2. The rate of heat removal should be the highest at
the onset of the process. It provides short freezing
time 7, low final temperature difference AT and high
velocity of interface displacement.

3. Initial meat temperature (T, > T,,) has a small effect
on t and AT. For T, < T,,, T, is observed to affect
the time of process.

4. At final temperature difference AT the greatest effect
is exerted by the cooling temperature T;.

5. Increase of the cooling rate involves decrease of 1
and increase of AT.

6. The relationship between the cooling rate and the
time of process is nonlinear.

The comparison of the analytical and experimental
data proved the feasibility of the model proposed.

The maximum error in numerical determination of
the process time does not exceed S per cent compared
to experimental data [9]. Temperature history diagram
T(x,1) plotted in accordance with the experimental
data [9] shows a clear retardation of temperature
decrease when passing through T,,.

This can be attributed to large measurement time
(2h), unexact measurement of temperature and other
physical and chemical characteristics of the test sample.
The characteristics of temperature variation in both
(experimental and numerical) cases are very similar.

Due to very complicated practical investigation (the
method presented is in the mean time the only one
which allows an exact analysis of the process of food
staff freezing.
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MODELE MATHEMATIQUE DE CONGELATION DES PRODUITS DE CONSOMMATION

Résumeé—L’article traite d’un modéle mathématique du processus de congélation des produits de

consommation. On considére un probléme symétrique unidimensionnel avec conditions aux limite de

3éme espéce. Les équations différentielles du transfert de chaleur et de masse (avec coefficients discontinus

et non linéaires) relatives au processus étudié sont résolues numériquement a I'aide d’'une méthode de
différences finies. L'analyse des résultats obtenus est présentée dans l'article.

MATHEMATISCHES MODELL FUR GEFRIERPRODUKTE

Zusammenfassung— Die Arbeit befallt sich mit einem mathematischen Modell fiir den Ablauf des

Gefrierens in Nahrungsmitteln. Es wird das eindimensionale symmetrische Problem mit der Rand-

bedingung 3. Art betrachtet. Fiir den untersuchten Fall werden die Differentialgleichungen fir den

Wirme- und Stoffaustausch (fiir diskontinuierliche und nichtlineare Koeffizienten) mit Hilfe der Methode
finiter Differenzen numerisch gelost. Die gewonnenen Ergebnisse werden diskutiert.

MATEMATHYECKAA MOIEJIb 3AMOPOXXEHHBIX MPOOYKTOB INOTPEBJIEHUA

Amnotauusi — PaccMaTpUBaeTCs MaTeMATHYeCKass MOZEb IPOLIECCa 3aMOPaXHBAHMA NMPOAYKTOB

notpebaenns. O6cyxnaeTcs OOHOMEPHAS CHMMETPHYHAs 38 1a4a C TPAHHYHBIMH YCTOBHSMHU TPETBETO

pona. C DOMOLIbIO METOAA KOHEYHBIX Pa3HOCTEH YHCIEHHO pernaioTca nuddepeHUmnanbHbie ypa-

BHEHHMsl TeIUI0- H MaccoobmeHna (Mpd pa3pbiBHOM W HeluHelHOM kosdduuuente). Ilpenacrasnen
AHAJIM3 [TOJTYYEHHBIX PE3YJIbTATOB.



