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Abstract-The paper deals with a mathematical model of the process of freezing consumption products. 
One-dimensional symmetrical problem with the third kind boundary conditions is considered. Differential 
equations for heat and mass transfer (for discontinuous and nonlinear coefficient) in accordance with 
the investigated process were numerically solved by finite difference method. The analysis of the results 

obtained is presented here. 

NOMENCLATURE 

a, coefficient of temperature balance; 

c, c1, c2, specific heat; 

Ci, average integral specific heat (i = 0, 1,2); 

F, initial humidity distribution; 

h, steps of length; 

1, (= 1 . .2n) 

J> (= La 

1, (= 1 . ..v) integers; 

% (=1,2...) 
Z, (= 1, I+ 1) 
k, 

1 
steps of time; 

k’, kl, k,. coefficient of mass conduction: 
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T 
T, 
L 

T kO? 
T 

T:: 

T,> 

W, 

W”, 

k’, 1 

Wkr, 

K 

X, 

Y, 

i= 1,2...) integer; 

body thickness; 
constant; 
temperature; 
average integral temperature (i = 1,2); 
cryoscopic temperature for meat 
Kr = 272.16”K; 
finite temperature of meat at the plate centre; 

initial temperature of meat; 
surface temperature (x = n) in time z; 
surrounding medium temperature in time r; 

mass-transfer potential; 
mass-transfer potential on surface (x = n) in 
time T ; 
balanced mass-transfer potential; 
mass-transfer potential on surface (T = Tr); 

enthalpy of frozen products; 
length coordinate; 

distance of limit phase separation from the 
surface in time T; 
approximate function for values of Y. 

Greek symbols 

=, heat-transfer coefficient; 

E”> different values; 

9, approximate function for values of T; 

9, average value; 

K, coefficient of mass transfer; 

4 thermal conductivity; 

Y, (=1,2...) integer; 

P, product density; 

7, time ; 
u, displacement velocity of interface; 

w, approximate function for values of w. 

1. INTRODUCTION 

DETERMINATION of unsteady temperature field of 
frozen food products is a very difficult problem because 
of the complicated character of such a process. It differs 

from ordinary cooling by the following features : 
(a) In examining the product it contains heat sources 

after ice formation; 

(b) Physical parameters of a product (thermal con- 
ductivity 1, specific heat c, coefficient of temperature 

balance a) depend on temperature and possess 
cryoscopic temperature Tkr which is discontinuous 
and nondifferential (Fig. 1). 

J, OK 

FIG. 1. Relation between heat-transfer coefficient of frozen 
meat and temperature. 

Discontinuity and nonlinear physical parameters result 
in nonisothermal transformation of water phase into ice 

(solid in many water solutions). 
Due to the complicated character of a process the 

theory of freezing food products contains many un- 
solved problems among which the most important are 
related to : 
1. The lack of enough exact solution for determining 

the time of freezing of simple configuration products; 
disregard of the complicated configuration for which 
the problem is practically unsolved; 
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The lack of solution for unsteady temperatue field 
as well as for problems of crystal body shifting in 
case of frozen products of simple and complex 
configuration; 
The lack of sufficient experimental data on physical 
parameters during freezing of food products with 
regard for moisture motion. 

At present there is a feeling of lack of publications 
on solution (even approximate) of any of the above 
problems. 

It is assumed in available publications [I-5] con- 
cerning freezing problems that at the interface there 
occurs freezing of the whole moisture (water) at a 
constant temperature, and physical parameters 1, c, u 
change their properties when T 2 TkF. As far as non- 
isothermal process of freezing of water contained in 
food products is concerned, such an assumption is un- 
acceptable. In [6] dealing with the determination of 
an unsteady temperature field and time of freezing of 
food products, phase separation which results in a very 
limited range was not taken into account. 

In this work a mathematical model is given which 
realizes a freezing process at conditions close to reality. 
The above mathematical model made it possibIe to 
solvemanyproblems which allow better understanding 
of the complicated process. 

2. MATHEMATICAL MODEL 

Due to the complicated character, the problem stated 
was confined to a one-dimensional case (unlimited 
plane). 

Let the food products (meat, fish) be homogeneous 
isotropic materials whose physical parameters depend 
mainly on their temperature and moisture. 

On both sides of the material the conditions of heat 
and mass transfer are identical (symmetrical problem), 

At a discontinuity point there exists a separation 
limit phase, at which 

T(y, 5) = xr = const. 

This limit divides the examined medium into unfrozen 
part I and frozen part 2 (Fig. 2). 

FIG. 2. Frozen meat plate. 

From the heat balance we have 

Taking into consideration heat and mass transfer of 
freezing process, we may describe the process by the 
following equations 

K(W,-ww,) = -k’(w, Tp 
ax x=L 

(6’) 

7-h 0) = iC4 T(Y, 5) = Tkrr 
w(x, 0) = F(x), w(y, t) = Wkr, T(0, Q) = r,,. (7) 

The system of equations (l)-(7) cannot be solved 
analytically. The detailed soiution of such a system can 
be obtained only by a numerical method. 

3. NUMERICAL SOLUTION OF THE MODEL PROPOSED 

Of the known numerical methods only the network 
method [7,8] allows rather exact solution for com- 
plicated nonlinear heat and mass-transfer problems. 

The above assumptions confine the solution for food 
freezing problems to : 

D[O < x 6 L, 0 < 7 < T,]. 

Covering the range D with a difference net divides 
0 ,< x < L into n equal segments with h as the length; 
we have 

xj=(i-l).h, X”=:L, i= l...tt. 

Dividing the time intervaf 0 6 t < t, into v equal seg- 
ments with k as length, obtain 

T,=l.k, l=O...v. 

Operating through the divided points parallel and 
straight to the coordinates (7, x), obtain the difference 
net & covering the range r): (Fig. 3). 

The proposed mathematical model (l)-(7) could be 
approximated in the following difference analogy 
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FIN. 4. Diagrams I and Il. 

value of h is not greater than the optimal one. In the 

contrary case the value of h/2 should be used. If the 
difference in calculation results is not small. it means 

that the value of 11 is either greater or less than the 
optimal one. 

The value of p is chosen when calculating with 
different values (0 < p Q f) and shows, whether the 
solution is convergent or divergent. 

5. CALCULATION EXAMPLE 

The universal difference model permits freezing par- 

ameter influence (c(, T,, TP, 6) on the time of the process, 
final temperature difference (AT = T,,- T,J, dis- 

placement speed of interface (u = df/dz) to be analysed. 
Calculations are carried out only for beef meat. 

whose heat-conduction coefficients (I, i are expressed 

by the following relations : 

for 248.16 < T < qr 

u(T) = [- 11032~6509-261~421965 x Z 

- 18252.4705 x Z2 -26.133707 x Z3 

- 133.87762 x Z4+ 

- 7.31961337 x Z’-0.11645322 x Z’] 

x 10e9, m2/h 

i(T) = [- 1246341825- 744465.0959 x Z 
_ 160251,468 x Z2- 17695,612 x Z3 
_ 102.877816 x Z4+29874844 x Z’ 

-0.343013138 x Z6] x 10eh. W/m.deg 

for &. < T < 303.16”K 

a(T)= OWl42-0~000001 x z, m’ih 

,I( T) = 0.476079324 - OGOO4026324 x :, W/m. deg 

where z = T-273.16. 
Due to the lack of experimental data the influence 

of the moisture motion on a temperature distribution 
was neglected in the calculation. 

Figures 5 and 6 show typical functions T = T(x, z) 
and f = f(z) for the following data: 

L = 0.08 m h = 0.01 m k = O@Ih 

r, = 257.16-K To = 279.16”K Go = 260.66”K 

cc, = 33,26W/m’.deg p, = 1070kgjm3 pz = 1010kg/m3. 

Calculation error L’, resulted from the replacement of 
the differential equation by finite-difference one solved 
by the Runge method is verified by the comparison of 
the calculated results with different values of the net 
range. 

E, 2 0.2”K. 

Here presented is the effect of freezing parameters on 
the time of process (Figs. 7 and 8), final difference tem- 
perature (Fig. 9) displacement interface (Fig. 10). 
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FIG. 5. Change of temperature of frozen meat plate. 
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FIN. 6. Temperature distribution along 
the thickness of mean plate. 
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FIG. 7. Influence of heat-transfer coefficient on 
freezing time. 
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FIG. 8. Influence of surrounding cooling temperature on 
time duration of freezing process. 
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FIG. 9. Influence of heat-transfer coefficient and surround- 
ing cooling temperature on product final difference in 

temperature. 
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FIG. 10. Influence of heat-transfer coefficient and surround- 
ing cooling temperature on interphase transfer. 

6. CONCLUSIONS 

From the analysis of the temperature variation 
diagram (Fig. 5) two different stages in a process of 
freezing can be seen. At the first stage a decrease in 
temperature (to T,,) is seen in all layers of the first 
sample, being the quickest on the surface and slowest 
in the middle. 

The fall of temperature is retarded due to the effect 
of the solidified water heat, which is particularly large 
near the cryoscopic temperature (T,,). The more inten- 
sive cooling of the test layers, the more pronounced 
is the temperature decrease when passing through Tkr 

In case of slow cooling the retardation of temperature 
fall is distinct (particularly at the centre of the sample). 

Rapid temperature fall whose effect is more clearly 
observed at the centre of the sample is also seen in the 
figure. This is again the effect ofsolidified water solution 
with noneutectic components. At this stage the basic 
part of the heat removed is used for freezing out water 
in the central part of the sample, while in all other 
layers most of the water is already frozen out. When 
most of the water at the centre of the sample is frozen 
out, an accelerated fall of temperature is observed on 
its surface. It can be seen from Fig. 6 that for steady 
conditions (a = const, ~~ = const) the velocity of inter- 
face is approximately constant. This velocity increases 
with the rate of heat removal. 

From the analysis of the calculation carried out the 
following conclusions of practical value can be made: 

The thickness of mea; should not be large to give 
the most effective time of freezing and a small final 
temperature difference AT. 
The rate of heat removal should be the highest at 
the onset of the process. It provides short freezing 
time 7, low final temperature difference AT and high 
velocity of interface displacement. 
Initial meat temperature (T, > T,,) has a small effect 
on z and AT. For T, < T,,, Tp is observed to affect 

the time of process. 
4. At final temperature difference AT the greatest effect 

is exerted by the cooling temperature T,. 
5. Increase of the cooling rate involves decrease of z 

and increase of AT. 
6. The relationship between the cooling rate and the 

time of process is nonlinear. 
The comparison of the analytical and experimental 

data proved the feasibility of the model proposed. 
The maximum error in numerical determination of 

the process time does not exceed 5 per cent compared 
to experimental data [9]. Temperature history diagram 
T(x,r) plotted in accordance with the experimental 
data [9] shows a clear retardation of temperature 
decrease when passing through Gr. 

This can be attributed to large measurement time 
(2 h), unexact measurement of temperature and other 
physical and chemical characteristics of the test sample. 
The characteristics of temperature variation in both 
(experimental and numerical) cases are very similar. 

Due to very complicated practical investigation (the 
method presented is in the mean time the only one 
which allows an exact analysis of the process of food 
staff freezing. 
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MODELE MATHEMATIQUE DE CONGELATION DES PRODUITS DE CONSOMMATION 

Resume--L’article traite d’un modtle mathematique du processus de congelation des produits de 
consommation. On considtre un probleme symttrique unidimensionnel avec conditions aux hmite de 
3eme espice. Les equations differentielles du transfert de chaleur et de masse (avec coefficients discontinus 
et non lineaires) relatives au processus etudit sont resolues numtriquement a I’aide d’une methode de 

differences finies. L’analyse des rtsultats obtenus est present&e dans I’article. 

MATHEMATISCHES MODELL FUR GEFRIERPRODUKTE 

Zusammenfassung-Die Arbeit befaDt sich mit einem mathematischen Model1 fur den Ablauf des 
Gefrierens in Nahrungsmitteln. Es wird das eindimensionale symmetrische Problem mit der Rand- 
bedingung 3. Art betrachtet. Fur den untersuchten Fall werden die Diflerentialgleichungen fur den 
Warme- und Stoffaustausch (fur diskontinuierliche und nichtlineare Koeffizienten) mit Hilfe der Methode 

finiter Differenzen numerisch gel&t. Die gewonnenen Ergebnisse werden diskutiert. 

MATEMATMqECKAR MOAEJIb 3AMOP0)3CEHHbIX nPOAYKTOB I-IOTPE6JIEHWl 

AHHoTaqHfl - PaccMarpasaeTcfl MaTeMaTRvecKafl Monenb npouecca 3aMopaxHaaHUfl nponya~os 
IIOTpe6neHHn. 06cyxnaeTcs OnHOMepHaR CHMMeTpHSHaR 3ana’la C I-PaHWIHblMH yCJlOBA~M&i TpeTbcXO 

POna. c nOMOK,b!O MeTOLla KOHe’fHblX pa3HOCTeii ‘IHCJIeHHO peIIlaWTCS ~H@&peHWiaJlbHbIe ypa- 
BHeHMfl TennO- W MXCOO6MeHa (IIPH pa3pbIBHOM II HWIkiH’.%HOM KO3&jNWieHT’Z). npeJ&TaBJl’ZH 

aHaJIU3 I,OJIyWHHblX pe3ynbTaTOB. 


